- (43) M. J. S. Dewar and M. L. McKee, J. Am. Chem. Soc., submitted. (44) (a) M. J. S. Dewar and H. S. Rzepa, J. Am. Chem. Soc., submitted; (b) M.
- J. S. Dewar and H. S. Rzepa, J. Am. Chem. Soc., to be published. (45) D. R. Stull and H. Prophet, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand.,
- No. 37 (1971).
- (46) D. B. Cook, P. C. Hollis, and R. McWeeny, *Mol. Phys.*, **13**, 553 (1967).
 (47) K. R. Roby, *Chem. Phys. Lett.*, **11**, 6, (1971); **12**, 579 (1972).
 (48) But see H. F. King, M. D. Newton, and R. E. Stanton, *Chem. Phys. Lett.*, **31**,
- 66 (1975).
- (49) M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., following paper in this issue.

Ground States of Molecules. 39. MNDO Results for Molecules Containing Hydrogen, Carbon, Nitrogen, and Oxygen

Michael J. S. Dewar* and Walter Thiel

Contribution from the Department of Chemistry, The University of Texas at Austin, Austin, Texas 78741. Received October 27, 1976

Abstract: Heats of formation, molecular geometries, ionization potentials, and dipole moments are calculated by the MNDO method for a large number of molecules. The MNDO results are compared with the corresponding MINDO/3 results on a statistical basis. For the properties investigated, the mean absolute errors in MNDO are uniformly smaller than those in MINDO/3 by a factor of about 2. Major improvements of MNDO over MINDO/3 are found for heats of formation of unsaturated systems and molecules with NN bonds, for bond angles, for higher ionization potentials, and for dipole moments of compounds with heteroatoms.

(I) Introduction

In the preceding paper,¹ we have introduced the approximations and parameters of the MNDO method (modified neglect of diatomic overlap). Here we report MNDO results for heats of formation, molecular geometries, ionization potentials, and dipole moments of a large number of molecules and compare them with the corresponding MINDO/3 values.² All results in this paper were derived from single-determinantal MNDO calculations, without inclusion of configuration interaction (Cl), and refer to molecular structures optimized by the Davidon-Fletcher-Powell method.³

(II) Heats of Formation

Tables I and II compare calculated and observed heats of formation for a set of 138 closed shell molecules, selected to represent as many bonding situations as possible and with emphasis on those which had presented problems in MINDO. The mean absolute error for these compounds is reduced from 11.0 kcal/mol in MINDO/3 to 6.3 kcal/mol in MNDO.

Here, and subsequently, we use average errors as a measure of accuracy, rather than standard deviations, because our compounds were not chosen at random. Indeed, in view of our deliberate inclusion of molecules that had proved especially "difficult" in previous studies, the errors reported here are certainly greater than they would have been for a randomly chosen set.

The main improvements of MNDO over MINDO/3, are found (Table I) in the case of aromatic systems, molecules with triple bonds (C=C, C=N), three-membered rings, globular polycylic compounds with five- or six-membered rings, and molecules with NN bonds. Some of these improvements (e.g., for unsaturated systems and NN bonds) are probably due to the inclusion of directional effects in the two-center MNDO electron-electron repulsions and core-electron attractions.¹

Large errors in the MNDO heats of formation (10-20 kcal/mol) are encountered in three areas where MINDO/3 met with similar difficulties. Four-membered rings are consistently predicted too stable and sterically crowded molecules with adjacent methyl groups (e.g., tert-butyl compounds) too unstable, while molecules with NO bonds show errors in both directions. The first two shortcomings (four-membered rings, sterically crowded molecules) seem to be inherent in the basic

Table I. Mean Absolute Errors $\Delta(\Delta H_f)$ for Heats of Formation^a

	$\Delta(\Delta H_{\rm f}),$ kcal/mol			
Class of compd	No.	MNDO	MINDO/3	
All compounds	138	6.3	11.0	
Hydrocarbons	58	6.0	9.7	
With aromatic rings	5	1.7	12.1	
With triple bonds	6	6.6	13.5	
With three-membered rings ^b	8	5.2	11.7	
With four-membered rings ^b	7	18.7 °	8.6	
Acyclic hydrocarbons	26	3.5	6.9	
Cyclic hydrocarbons	32	8.0	11.9	
Bicyclic hydrocarbons with 5- and 6-membered rings	5	2.9	22.3	
Nitrogen compounds (CHN)	34	6.5	17.3	
Amines	11	4.1	6.9	
Cvanides	8	4.6	19.6	
With NN bonds	11	8.1	29.5	
Oxygen compounds (CHO)	39	5.2	6.8	
Alcohols, ethers	12	4.3	5.7	
Aldehydes, ketones	10	4.3	6.1	
Acids, esters, anhydrides	9	3.2	6.8	
With OO bonds	5	7.7	3.4	
Nitrogen-oxygen compounds (CHNO)	7	14.8	15.4	
All compounds excluding those with 4-membered rings, <i>tert</i> -butyl groups, or NO bonds	122	5.0	10.9	

^a Based on the results in Table II. ^b Including bicyclic compounds. Molecules containing three- and four-membered rings were counted in the class of four-membered rings only. ^c Excluding cubane, the mean absolute error reduces to 13.5 kcal/mol.

Table II. Heats of Formation $\Delta H_{\mathbf{f}}$ for Closed Shell Molecules

	Δ	H _f , kcal/mo	1			Δ	H _f , kcal/mol		
Molecule	Calcd	Exptl	Error	Ref	Molecule	Calcd	Exptl	Error	Ref
H ₂	0.7	0.0	+0.7		$\overline{\bigcirc}$	8.6	7.2	+14	а
$C_{2}H_{6}$	-11.9 -19.7	-17.9 -20.2	+6.0 +0.5	a a		0.0	1.2	, 1.4	ч
C ₂ H ₄	15.3	12.5	+2.8	а		37.5	35.3	+2.2	а
C ₂ H ₂ CH ₃ CH ₂ CH ₃	-24.9	-24.8	+3.0 -0.1	a a	$\overline{\frown}$	22.6	42.0	10.2	_
CH, CH=CH,	4.9	4.9	0.0	а		33.6	43.9	-10.3	a
$CH_{3}C=CH$ $CH_{3}C=CH,$	40.9	44.4 45.6	-3.5 -1.8	a a	\wedge	69.1	51.9	+17.2	а
\sim	-29.7	-30.4	+0.7	а	\sim	22.7	11 3	10.6	-
\succ	-26.8	-32.4	+5.6	а		55.7	44.5	-10.0	u
\wedge	0.3	-0.2	+0.5	а		28.6	30.9	-2.3	а
\sim	-5.1	-3.0	-2.1	а	\square	30.2	37.3	-7.1	с
	-4.0	-1.9	-2.1	а	$\overline{\mathbf{A}}$				
\succ	-2.1	-4.3	+2.2	а	A	-10.3	-12.4	+2.1	е
	33.4	38.8	-5.4	а	A	62.6	59.7	+2.9	с
\sim	28.9	26.0	+2.9	а					
	35.6 24.4	39.5 34.7	-3.9	a a		-26.3	-24.1	-2.2	е
	65.0	72.8	-7.8	ц Ъ					
	102.2	113.0	-10.8	b		38.1	36.1	+2.0	а
\sim	-34.4	-35.1	+0.7	а	Adamantane	-26.4	-31.9	+5.5	f
+	-24.6	-40.3	+15.7	a	N ₂	99.1 8.0	0.0	-49.6 +8.0	a
\sim	18.7	18.1	+0.6	а	NH,	-6.3	-11.0	+4.7	g
<u>/</u>	20.0	19.1	+0.9	а	$(CH_3)_{1}NH_2$	-7.5		-2.0 -2.2	a a
\sim	25.9	25.3	+0.6	а	$(CH_3)_3N$	-2.8	-5.7	+2.9	а
\triangleright	11.2	12.7	-1.5	а	$C_2H_5NH_2$ <i>n</i> -C_3H_NH,	-12.9 -17.9	-11.4 -16.8	-1.3 -1.1	a a
cis	-1.8	1.3	-3.1	с	$i \cdot C_3 H_7 N H_2$ t-C_H_NH_	-16.0 -15.1	-20.0 -28.9	+4.0 +1 3.8	a a
	68.2	66.2	+2.0	a	DNH 2	25.2	30.2	-5.0	а
	53.6	58.2	-4.6	a	NH	32.4	25.9	+6.5	а
\searrow	39.1	46.4	-7.3	С	N	28.7	34.6	-5.9	а
\succ	37.8	47.9	-10.1	а		44.2	66.5	-22.3	а
	-11.9	6.8	-18.7	а					
	31.0	37.5	-6.5	с	Ň	35.5	47.0	-11.5	а
	6.4	19.8	-13.4	С	NON	38.3	46.9	-8.6	а
\sim	10.9	29.1	-18.2	d		22.0	20.8	+1.2	а
\bigcap	-30.5	-18.4	-12.1	а	HCN	34.9	32.3	+2.6	g
$\tilde{\square}$	-0.4	8.2	-8.6	а	CH₃CN C₂H₅CN	18.9 13.4	20.9 12.1	-2.0 +1.3	h b
Ď	32.0	31.9	+0.1	а	$CH_2 = CH - CN$	43.7	44.1 81.3	-0.4	a
\tilde{r}	53.6	47.5	+6.1	а	NC	110.7	126.5	-15.8	a
$\overline{\bigcirc}$	-34.8	-29.5	-5.3	а	$(CN)_2$	65.9	73.8	-7.9	а
$\stackrel{\smile}{\frown}$	-10.0	-1.1	-8.9	а	CH NC	51.8	51.5 35.6	+0.3	a h
\sim	14.4	25.4	-11.0	а	$M_2 - M_2$ $CH_2 MH_2 - NH_2$	14.3	22.8 22.6	-8.5 -6.0	g a
\sim	21.2	19.2	+1 4	л	$(CH_3)_2N - NH_2$ $CH_3NH - NHCH_3$	19.1 15.8	20.0 22.0	-0.9 -6.2	a a
\square	135	12.0	+1 5	ч	H, H	33.8	50.9	-17.1	g
\forall	10.0	12.0	. 1.5		N=N				

Journal of the American Chemical Society / 99:15 / July 20, 1977

	$\Delta H_{\mathbf{f}}$, kcal/mol						$\Delta H_{\rm f}$, kcal/mol		
Molecule	Calcd	Exptl	Error	Ref	Molecule	Calcd	Exptl	Error	Ref
					C,H,CHO	-48.1	-45.5	-2.6	а
	2.2	8.6	-6.4	i	(ĆH,),CO	-49.5	-51.9	+2.4	а
N		4.0		•	CH CO	-7.0	-11.4	+4.4	m
CH N	67 1	71	2.0	;	(CHO),	-61.6	-50.7	-10.9	а
CH_2N_2	07.1	/1	- 3.9)	(CH,CO),	-78.9	-78.2	-0.7	а
	72.5	79	-6.5	j	CH ₃ COCH ₂ COCH ₃	-83.3	-90.5	+7.2	а
IN IN	72.0	70.2	+2.7	h	0= </td <td>-33.1</td> <td>-29.3</td> <td>-3.8</td> <td>а</td>	-33.1	-29.3	-3.8	а
0	12.0	22.0	42.7						
	48 5	22.0	1/1 3	π.i σ	()-CHO	-9.8	-8.8	-1.0	а
H O		-57.8	-31	5			0.0.7		
CH.OH	-57.4	-48.1	-93	5 1	НСООН	-92.7	-90.6	-2.1	а
СН.ОН	-63.0	-56.2	-6.8	u n	CH ₃ COOH	-101.2	-103.3	+2.1	а
$n_{1}C_{1}H_{0}H_{0}H_{1}$	-67.7	-61.2	-6.5	и л	C ₂ H ₅ COOH	-105.7	-108.4	+2.7	а
i-C.H.OH	-65.4	-65 1	-0.3	и Л	(COOH) ₂	-174.3	-175.0	+0.7	а
t-C.H.OH	-64 3	-74 7	+10.4	a		-65.9	-70.1	+4.2	а
CH.OCH.	-51.2	-44.0	-7.2	a	O-COOH	0017			
C.H.OC.H.	-62.0	-60.3	-1.7	a	HCOOCH ₁	-85.6	-83.6	-2.0	b
No.	15.5	10.0	2.0		CH,COOCH,	-93.6	-97.9	+4.3	Ь
10	-15.5	-12.6	-2.9	а	CH ₃ CO—O—COCH ₃	-132.8	-137.1	+4.3	а
\bigcirc	-8.7	-8.3	-0.4	а	P				
Он-он	-24.7	-23.0	-1.7	а	R	-88.7	-95.2	+6.5	а
OCH.	-18.0	-17.3	-0.7	а	HCONH	-39.8	-44.5	+4.7	g
	-38.2	32.5	57	a	HCON(CH ₄),	-36.9	-45.8	+8.9	a
	- 28 3	- 30.1	-3.7	8	N ₂ O	30.9	19.6	+11.3	g
C H O - OC H	- 39.1	-46.1	+7.0	u a	مە	10.6	10.0	21.0	_
CO	-6.2	-26.4	+20.2	u a	H N	-40.6	-18.8	-21.8	8
CO.	-75.4	-94 1	+187	и Л	HONO.	-17.5	-32.1	+14.6	g
C, O,	-24.1	-22.4	-17	u n	CH, ONO	-36.6	-15.8	-20.8	a
CH.O	-33.0	-26.0	-7.0	a	CH, NO,	3.3	-17.9	+21.2	a
CH ₃ CHO	-42.4	-39.7	-2.7	a					

^aJ. D. Cox and G. Pilcher, "Thermochemistry of Organic and Organometallic Compounds", Academic Press, New York, N.Y., 1970. ^bD. R. Stull, E. F. Westrum, Jr., and G. C. Sinke, "The Chemical Thermodynamics of Organic Compounds", Wiley, New York, N.Y., 1969. ^cR. B. Turner, P. Goebel, B. J. Mallon, W. von E. Doering, J. F. Coburn, Jr., and M. Pomerantz, J. Am. Chem. Soc., 90, 4315 (1968). ^dW. D. Good, R. T. Moore, A. G. Osborn, and D. R. Douslin, J. Chem. Thermodyn., 6, 303 (1974). ^eP. v. R. Schleyer, J. E. Williams, and K. R. Blanchard, J. Am. Chem. Soc., 92, 3277 (1970). ^fAverage value from two determinations: M. Mansson, N. Rapport, and E. F. Westrum, J. Am. Chem. Soc., 92, 7296 (1970); R. S. Butler, A. S. Carson, P. G. Laye, and W. V. Steele, J. Chem. Thermodyn. 3, 277 (1971). ^gD. R. Stull and H. Prophet, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., No. 37 (1971). ^hD. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Baily, and R. H. Schumm, Natl. Bur. Stand. (U.S.), Tech. Note, No. 270-3 (1968). ⁱP. S. Engel, J. L. Wood, J. A. Sweet, and M. L. Margrave, J. Am. Chem. Soc., 96, 2381 (1974). ^jS. W. Benson, F. R. Cruickshanck, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw, and R. Walsh, Chem. Rev., 69, 279 (1969). ^kCalculated without Cl. ^lG. Herzberg, "Spectra of Diatomic Molecules", 2nd ed, Van Nostrand, New York, N.Y., 1950. ^mR. L. Nuttall, A. H. Lauffer, and M. V. Kilday J. Chem. Thermodyn., 3, 167 (1971).

Table III. Heats of Isomerization ΔH_{isom} for Closed Shell Molecules	

	Δ	H _{isom} , kcal/	mol		Δ	H _{isom} , kcal/	mol
Isomerization reaction	Calcd	Exptla	Error	Isomerization reaction	Calcd	Exptla	Error
$CH_3C \longrightarrow CH_2 \longrightarrow CH_2$	2.9	1.3	+1.6	$\wedge \rightarrow +$	9.8	-5.2	+15.0
CH₃C===CH → D	26.3	21.8	+4.5	$C_2H_5NH_2 \longrightarrow (CH_3)_2NH$	6.3	7.0	-0.7
$CH_3CH \longrightarrow CH_2 \rightarrow \bigcirc$	6.3	7.8	-1.5	$H \xrightarrow{N} H \xrightarrow{N} H$	1.8	>0 <i>c</i>	
\wedge trans \rightarrow \wedge gauche	0.5	0.6 <i>b</i>	-0.1	$CH_3CN \longrightarrow CH_3NC$	41.1	14.7	+26.4
$\sim \rightarrow / $	1.1	1.1	0.0	\wedge	20.5		
$\sim \rightarrow \sim \sim$	5.4	2.8	+2.6		50.5		~ 4
$\wedge \!$	3.0	-1.3	+4.3	$C_2H_4OH \longrightarrow (CH_3)_2O$ $CH_4CH==O \longrightarrow CH_3==CH_4OH$	11.8 7.5	12.2	-0.4
$\wedge \to \square$	0.5	2.0	-1.5	$CH_{CH} \longrightarrow D$	26.9	27.1	-0.2
$\wedge \rightarrow \neg \downarrow$	1.3	1.0	+0.3	снасоон нсоосна	15.6	19.7	-4.1
$\wedge\!\!\wedge\!\to\wedge\!\!\wedge$	7.2	7.2	0.0	$H \xrightarrow{0} H \xrightarrow{0} H$	1.6	0.5	-1.1

^a Unless noted otherwise, the experimental data were derived from Table II. ^bR. A. Bonham and L. S. Bartell, J. Am. Chem. Soc., 81, 3491 (1959). ^cA. Trombetti, Can. J. Phys., 46, 1005 (1968).

Table IV. Rotational Barriers

	Ba			
Molecule	Calcd	Exptl	Error	Ref
$CH_2 = CH_2$	62.5 <i>^b</i>	65.0	-2.5	а
CH3-CH3	1.0	2.9	-1.9	с
CH ₃ -NH ₂	1.1	2.0	-0.9	d
CH3-OH	0.7	1.1	-0.4	е
NH_2-NH_2				
Cis	8.0			ſ
Trans	0.0			
но-он				
Cis	6.9	7.0	-0.1	g
Trans	0.0	1.1	-1.1	_

^a B. S. Rabinovitch and F. S. Looney, J. Chem. Phys., **23**, 2439 (1965). ^b Calculated without CI. ^c S. Weiss and G. E. Leroi, J. Chem. Phys., **48**, 962 (1968). ^d D. R. Lide, Jr., *ibid.*, **27**, 343 (1957). ^e E. V. Ivash and D. M. Dennison, *ibid.*, **21**, 1804 (1953). ^J No experimental data. Since the two amino groups are orthogonal to each other in the equilibrium structure, there must be a finite trans barrier. ^g R. H. Hunt, R. A. Leacock, C. W. Peters, and K. T. Hecht, J. Chem. Phys., **42**, 1931 (1965).

Table V. Heats of Formation ΔH_f for Neutral Radicals

Radical	Calcd	Exptl	Error	Ref
CH3	25.8	34.8	-9.0	а
CH ₃ CH ₂	12.8	25	-12	Ь
(CH ₃) ₂ CH	1.5	16.8	-15.3	Ь
(CH ₃) ₃ C	-7.2	4.5	-11.7	Ь
Vinyl	63.7	59.6	+4.1	с
Allyl	35.3	40	-5	с
NH_2	37.1	40.1	-3.0	а
CH ₃ NH	32.9	37	-4	Ь
OH	0.5	9.5	-9.0	d
CH3O	0.1	-0.5	+0.6	Ь
HCO	-0.5	10.4	-10.9	d
NO	-0.2	21.6	-21.8	а
NO_2	-4.6	7.9	-12.5	а
N3	102.4	99	+3	d

^a See footnote g of Table II. ^b J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, *Natl. Stand. Ref. Data Ser., Natl. Bur. Stand.*, **No. 26** (1969). ^c F. P. Lossing, *Can. J. Chem.*, **49**, 357 (1971). ^d M. W. Chase, J. L. Curnutt, A. T. Hu, H. Prophet, A. N. Syverud, and L. C. Walker, *J. Phys. Chem. Ref. Data*, **3**, 311 (1974).

MNDO approximations since they appeared throughout during our parametrization studies for every combination of parametric functions investigated.¹ As for the third shortcoming (NO bonds), it should be remembered that no molecules with NO bonds were used during the parametrization.¹ It is possible that the errors might have been reduced by a reparametrization, including such compounds in the basis set. Since, however, there was no guarantee that this would **be** the case and since the errors were not at all excessive, we did not feel that the considerable cost of the reparametrization would be justified.

Even in these three areas the errors in the MNDO heats of formation remain within bounds. The only compound for which the MNDO error exceeds 25 kcal/mol is cubane (error, -49.6kcal/mol), a compound containing six fused four-membered rings. It is amusing to note that MINDO/3 gave a much better result in this case (error, -8.9 kcal/mol²). Since cubane is a "globular" molecule, and since MINDO/3 gives heats of formation that are too positive in such cases, this tendency

Table VI. Heats of Formation ΔH_{f} for Cations

	اه,			
Cation	Calcd	Exptl	Error	Ref
CH ₃ ⁺	243.9	260	-16	a
CH ₃ CH ₂ ⁺	219.7 <i>h</i>	219	+1	Ь
(CH ₃) ₂ CH ⁺	200.8	192	+9	С
$(CH_3)_3C^*$	187.3	176	+11	b
$CH_2 = CH^+$	265.5 <i>h</i>	266	0	d
+	221.3	226	-5	d
\bigcirc	207.5	209	-1	b
ČH-ČH,	217.9	216	+ 2	b
NH₄⁺	165.0	155	+10	е
$CH_2 = NH_2^*$	186.9	178	+ 9	b
H ₃ O ⁺	134.2	139	-5	f
HCO⁺	184.6	199	-14	а
CH₂=O⁺H	155.5	167	-11	g
NO ⁺	230.5	237	-6	f
NO ₂ ⁺	240.5	233	+ 8	b

^a See footnote d of Table V. ^b See footnote b of Table V. ^cS. L. Chong and J. L. Franklin, J. Am. Chem. Soc., 94, 6347 (1972). ^d See footnote c of Table V. ^eP. Kebarle, R. Tamdagni, H. Kirooka, and T. B. McMahon, Int. J. Mass Spectrom. Ion Phys., 19, 71 (1976). ^f See footnote g of Table II. ^gJ. Vogt and J. L. Beauchamp, J. Am. Chem. Soc., 97, 6682 (1975). ^h Value for the classical cation which is predicted to be more stable than the nonclassical one.

Table VII. Mean Absolute Errors for Optimized Bond Lengths and Bond Angles^a

		Mean absolute error		
Geometrical variable	No.	MNDO	MINDO/3	
All bond lengths, Å	228	0.014	0.022	
$\rightarrow C-H, A$	25	0.012	0.017	
	25		0.021	
=C $-H, A$	25	0.006	0.021	
≡C−H, A	6	0.006	0.019	
All CH, A	56	0.009	0.019	
С-С, А	58	0.012	0.019	
C=C, A	31	0.012	0.014	
C≡C, Å	7	0.009	0.002	
All CC, A	96	0.012	0.016	
NH, Å	9	0.006	0.019	
N—C, A	8	0.008	0.051	
N≡C, A	6	0.008	0.004	
All NC, Å	17	0.010	0.029	
NN, Å	9	0.032	0.074	
OH, A	7	0.011	0.010	
0—C, Å	8	0.016	0.047	
O=C, Å	14	0.017	0.012	
All OC, A	22	0.016	0.025	
ON, Å	8	0.026	0.026	
00, A	3	0.117	0.043	
All bond angles, $b \deg$	91	2.8	5.6	
HCH, deg	15	3.1	6.1	
HCC. deg	23	1.3	2.6	
CCC, ^b deg	12	2.0	5.9	
All angles at C, b deg	62	2.0	4.4	
All angles at N. ^b deg	15	3.2	7.1	
All angles at O, b deg	9	8.5	10.7	
Angles between planes in	5	1.6	5.9	
bicyclic compounds, deg				

⁴ Based on the results in Table VIII. ^b Bond angles in rings are not included since they are mainly determined by the topology of the ring. The errors for these angles are considerably smaller than those given in the table.

presumably balanced the equal tendency to give too negative heats of formation for compounds containing four-membered rings. In MNDO the former tendency is corrected, but not the latter, so the calculated heat of formation is much too negative.

Molecule	Point group	Calcd (obsd) values for geometrical variables ^a	Ref
H ₂	D_{mh}	HH 0.663 (0.742)	b
CH₄ C.H.	T _d Dad	CH 1.104 (1.094) CC 1.521 (1.536), CH 1.109 (1.091), HCC 111.2 (110.9)	с с
C_2H_4	D_{2h}	CC 1.335 (1.339), CH 1.089 (1.086), HCC 123.2 (121.2)	С
C_2H_2	D _{∞h}	CC 1.194 (1.203), CH 1.051 (1.060)	С
$H_{1}^{4} H_{1}^{6} H_{10}^{6} H_{11}^{10}$	C ₂ ,	CC 1.530 (1.526), C ¹ H ⁴ 1.110 (1.089), C ¹ H ⁵ 1.109 (1.094), C ² H ⁷ 1.115 (1.096), C ¹ C ² C ³ 115.4 (112.4), H ⁷ C ² H ⁸ 106.0 (106.1), H ⁴ C ¹ C ² 110.3 (111.8), H ⁵ C ¹ H ⁶ 107.9 (107.3), C ² -C ¹ H ⁵ H ⁶ 129.0 (126.4)	d
$H^{4} \xrightarrow{I}_{a} H^{b}$	Cs	$ \begin{array}{c} C^1C^2 \ 1.340 \ (1.336), C^2C^3 \ 1.496 \ (1.501), C^1H^4 \ 1.089 \ (1.081), C^1H^5 \ 1.089 \ (1.091), C^2H^6 \\ 1.096 \ (1.090), C^3H^7 \ 1.109 \ (1.085), C^3H^8 \ 1.111 \ (1.098), C^1C^2C^3 \ 126.9 \ (124.3), H^4C^1C^2 \\ 122.4 \ (121.5), H^5C^1C^2 \ 124.3 \ (120.5), H^6C^2C^1 \ 119.3 \ (119.0), H^7C^3C^2 \ 113.1 \ (111.2), H^8C^3H^9 \\ 107.7 \ (106.2), C^2-C^3H^8H^9 \ 126.1 \ (126.0) \end{array} $	е
CH=C-CH ₃	C _{3v}	C ¹ C ² 1.196 (1.206), C ² C ³ 1.445 (1.459), C ¹ H 1.050 (1.056), C ³ H 1.111 (1.105), C ² C ³ H 111.0 (110.2)	f
CH ₂ =C=CH ₂	D_{2d} C_{2}	CC 1.306 (1.308), CH 1.090 (1.087), HCH 114.2 (118.2) C ¹ C ² 1.531 (1.533), C ² C ³ 1.539 (1.533), C ¹ C ² C ³ 114.8 (112.8)	g h
\succ	C _{3v}	CC 1.541 (1.525), CCC 112.3 (111.2)	i
\sim	C_{2h}	C ¹ C ² 1.497 (1.508), C ² C ³ 1.346 (1.347), C ¹ C ² C ³ 126.3 (123.8)	j
\succ	$C_{2\nu}$	C ¹ C ² 1.348 (1.330), C ² C ³ 1.508 (1.507), C ¹ C ² C ³ 121.9 (122.4)	k
\sim	C_{2h}	C ¹ C ² 1.344 (1.341), C ² C ³ 1.465 (1.463), C ¹ C ² C ³ 125.7 (123.3)	l
CH₃C≡CCH₃	D _{3d}	C ¹ C ² 1.444 (1.467), C ² C ³ 1.199 (1.213), C ¹ H 1.111 (1.115), HC ¹ C ² 111.0 (110.7)	m
CH=C-CH=CH ₂	C_s	$C^{1}C^{2}$ 1.198 (1.208), $C^{2}C^{3}$ 1.417 (1.431), $C^{3}C^{4}$ 1.345 (1.341), $C^{2}C^{3}C^{4}$ 125.3 (123.1) $C^{1}C^{2}$ 1 199 (1.205), $C^{2}C^{3}$ 1 368 (1.376), $C^{1}H$ 1.051 (1.046)	m n
$CH_2 = C = C = CH_2$	D_{2h}	$C^{1}C^{2}$ 1.310 (1.318), $C^{2}C^{3}$ 1.270 (1.283), $C^{1}H$ 1.090 (1.083)	0
$C(CH_3)_4$	T _d Dau	CC 1.554 (1.539), CH 1.109 (1.120), HCC 111.7 (110.0) CC 1.525 (1.510), CH 1.096 (1.089), HCH 110.8 (115.1)	p a
	Com	$C^{1}C^{2}$ 1.328 (1.296), $C^{2}C^{3}$ 1.512 (1.509), $C^{1}H$ 1.062 (1.072), $C^{3}H$ 1.097 (1.088), $HC^{1}C^{2}$	4
	020	151.6 (149.9), HC ³ H 111.0 (114.6)	r
	D_{2d}	CC 1.549 (1.548), CH 1.105 (1.133), HCH 107.6 (108.1), C'C'C'C' 180.0 (153.0).	S
	$C_{2\nu}$	$C^{*}C^{*}$ 1.355 (1.342), $C^{*}C^{*}$ 1.525 (1.517), $C^{*}C^{*}$ 1.568 (1.566), $C^{*}H$ 1.075 (1.083), $C^{*}H$ 1.104 (1.094), $HC^{*}C^{2}$ 135.8 (133.5), $HC^{*}H$ 108.4 (109.2), $C^{*}-C^{4}H$, 136.8 (135.8)	t
\bigcirc	Cs	CC 1.542 (1.546), CH 1.111 (1.114), HCC 110.7 (111.7)	u, v
\square	$C_{2\nu}$	C ¹ C ² 1.362 (1.342), C ² C ³ 1.477 (1.469), C ¹ C ⁵ 1.521 (1.509)	w
\bigcirc	C_{2v}	C ¹ C ² 1.491 (1.470), C ² C ³ 1.366 (1.355), C ³ C ⁴ 1.477 (1.476), C ¹ C ⁶ 1.345 (1.349)	x
\bigcirc	D _{3d}	CC 1.539 (1.536), CH 1.114 (1.121), CCC 114.1 (111.4), HCH 105.7 (107.5), CCCC 46.3 (54.9)	У
\bigcirc	<i>C</i> ₂	C ¹ C ² 1.346 (1.335), C ² C ³ 1.504 (1.504), C ³ C ⁴ 1.541 (1.515), C ⁴ C ⁵ 1.539 (1.550), C ¹ C ² C ⁴ C ⁵ 21.8 (28.3)	z
\bigcirc	D _{6h}	CC 1.407 (1.397), CH 1.090 (1.084)	С
\land	C_{2v}	C ¹ C ² 1.526 (1.498), C ¹ C ³ 1.537 (1.497), C ¹ H 1.074 (1.071), C ² H _{eq} 1.098 (1.093), C ² H _{ax}	00
\bowtie	D _{2d}	$C^{1}C^{2}$ 1.509 (1.469), $C^{2}C^{3}$ 1.529 (1.519), $C^{2}H$ 1.096 (1.091), $HC^{2}H$ 111.0 (118.4), $C^{3}-C^{2}H_{2}$ 150.6 (148.3)	bb
	C _s	C ¹ C ² 1.540 (1.528), C ² C ³ 1.563 (1.565), C ¹ C ⁴ 1.555 (1.536), C ¹ C ⁵ 1.530 (1.507), C ⁵ C ⁴ C ¹ C ² 117.4 (116.7)	сс
	C _s	C ¹ C ² 1.524 (1.511), C ² C ³ 1.361 (1.341), C ¹ C ⁴ 1.567 (1.543), C ¹ C ⁵ 1.534 (1.533), C ⁵ C ⁴ C ¹ C ² 117.6 (114.5)	dd
Δ	C _{2v}	C ¹ C ² 1.561 (1.539), C ² C ³ 1.557 (1.557), C ¹ C ⁷ 1.562 (1.560), C ¹ C ⁷ C ⁴ 93.2 (93.1), C ⁴ C ¹ C ⁴ C ³ 114.2 (113.1)	ee
À	<i>C</i> ₂ <i>v</i>	C ¹ C ² 1.540 (1.535), C ² C ³ 1.358 (1.343), C ¹ C ⁷ 1.579 (1.573), C ¹ C ⁷ C ⁴ 91.7 (94.1), C ⁶ C ¹ C ⁴ C ³ 113.4 (115.6)	ee
$\hat{O}\hat{O}$	D _{2h}	C ¹ C ² 1.382 (1.364), C ² C ³ 1.429 (1.415), C ¹ C ⁹ 1.439 (1.421), C ⁹ C ¹⁰ 1.435 (1.418)	ff
N₂ NH₃ CH₃NH₂	D _{wh} C _{3v} C _s	NN 1.103 (1.094) NH 1.007 (1.012), HNH 105.3 (106.7) CN 1.460 (1.474), NH 1.008 (1.011), HNC 109.8 (112.0), HNH 105.6 (105.9)	b c gg

Table VIII (Continued)

	Point		
Molecule	group	Calcd (obsd) values for geometrical variables ^{a}	Ref
$(CH_3)_2NH$	C_{s}	CN 1.462 (1.462), NH 1.009 (1.019), CNC 117.6 (112.2), HNC 109.5 (108.9), H-NCC	
		130.1 (125.4)	hh
$(CH_3)_3N$	$C_{3\nu}$	CN 1.464 (1.451), CNC 116.0 (110.9)	ii
NNH	C.	CN 1.479 (1.475), CC 1.516 (1.481), NH 1.008 (1.016), H–NCC 117.9 (112.5)	ii
	-3		,,
	$C_{2\nu}$	N ¹ C ² 1.398 (1.370), C ² C ³ 1.394 (1.382), C ³ C ⁴ 1.437 (1.417), N ¹ H 0.993 (0.996), C ² H	
		$1.082 (1.076), C^{3}H 1.080 (1.077), HC^{2}C^{3} 131.2 (130.8), HC^{3}C^{2} 126.5 (125.5)$	kk
_	Can	$N^{1}C^{2}$ 1 35 3 (1 338), $C^{2}C^{3}$ 1 411 (1 394), $C^{3}C^{4}$ 1 405 (1 392), $C^{2}H$ 1 095 (1 086), $C^{3}H$	
	- 20	1.089(1.082) C ⁴ H 1.090(1.081) C ⁶ N ¹ C ² 118.2 (116.9) N ¹ C ² C ³ 122.8 (123.8)	
		(1.052), (1.052) , (1.053) , (1.051) , (1.051) , (1.052) ,	
		(10.1)	"
	-	(120.1)	u
HCN	$C_{\infty v}$	CN 1.160 (1.154), CH 1.055 (1.063)	Ĵ
CH₃CN	C_{3v}	CN 1.162 (1.157), CC 1.451 (1.458), CH 1.110 (1.104), HCC 110.6 (109.5)	f
CH ₂ =CH-CN	C_s	$C^{1}C^{2}$ 1.344 (1.339), $C^{2}C^{3}$ 1.423 (1.426), $C^{3}N$ 1.162 (1.164), $C^{1}C^{2}C^{3}$ 124.9 (122.6)	mm
CH=C-CN	$C_{m\nu}$	$C^{1}C^{2}$ 1.197 (1.205), $C^{2}C^{3}$ 1.372 (1.378), $C^{3}N$ 1.163 (1.159), $C^{1}H$ 1.052 (1.057)	f
(CN).	Din	CN 1.161 (1.154), CC 1.377 (1.389)	c
CH-NC	C2	$C^{1}N^{2} = 1.424$ (1.424), $N^{2}C^{3} = 1.91$ (1.166), $C^{1}H = 1.114$ (1.101), $HC^{1}N^{2} = 110.2$ (109.1)	f
H NNH	C	NN 1 397 (1 449) NH 1 021 (1 022) HNN 107 2 (112 0) HNH 103 1 (106 0) HNNH	5
112111112	C_2	190 (0.0), INT 1.021 (1.022), INT 107.2 (112.0), INT 105.1 (100.0), INTAL	nn 00
	~	180.0 (90.0)	nn, 00
$CH_3N = NCH_3$, trans	C_{2h}	CN 1.474 (1.474), NN 1.222 (1.254), CNN 116.9 (111.9)	pp
CH,N,	$C_{2\nu}$	CN 1.310 (1.32), NN 1.141 (1.12), CH 1.086 (1.08), HCH 120.7 (127)	С
CH N	C.	$C^{1}N^{2}$ 1.460 (1.468), $N^{2}N^{3}$ 1.253 (1.216), $N^{3}N^{4}$ 1.130 (1.130), $C^{1}N^{2}N^{3}$ 119.1 (116.8),	
ب د.	- 3	$N^{2}N^{3}N^{4}$ 164.9 (180.0 assumed)	aa
0	ת .	00 1 135 (1 216)	h
\tilde{O}^2	Con	0.01121(1.278) 000 117.6 (116.8)	c
	C ² v		L Q
H ₂ O	C2v	OH 0.943 (0.957), HOH 106.8 (104.3)	С
H ₂ O ₂	C_2	OO 1.295 (1.475), OH 0.961 (0.950), HOO 107.3 (94.8), HOOH 180.0 (119.8)	rr, ss
H,	-		
	C_{s}	C'O ² 1.391 (1.425), O ² H ³ 0.946 (0.945), C'H ⁴ 1.115 (1.094), C'H ⁵ 1.119 (1.094), C'O ² H ³	
		$111.6 (108.5), H^4C^1O^2 108.1 (107.0), H^5C^1H^6 107.4 (108.6), O^2-C^1H^5H^6 129.9 (129.8)$	tt
п " H ³			
	~		
$(CH_3)_2O$	c_{2v}	CO 1.396 (1.410), COC 120.0 (111.7)	uu
\sim	C_{2v}	CO 1.417 (1.435), CC 1.513 (1.470), CH 1.102 (1.084), HCH 111.7 (116.3), C–CH ₂	
		159.2 (158.1)	vv
	C_{2y}	$O^{1}C^{2}$ 1.367 (1.362), $C^{2}C^{3}$ 1.390 (1.361), $C^{3}C^{4}$ 1.444 (1.431), $C^{2}H$ 1.084 (1.075), $C^{3}H$ 1.079	
60	2.0	(1.077) HC ² O ¹ 117.1 (115.9) HC ³ C ⁴ 126.6 (128.0)	ww
õ	C	(11163(1128))	Ь
00	Cv	(0,1,1)	0
CO,	$D_{\infty h}$	CO(1.100(1.102))	C
$CH_2 = O$	C_{2v}	CO 1.216 (1.208), CH 1.106 (1.116), HCH 113.0 (116.5)	XX
CH₃−CH=O	C_{s}	$C^{*}C^{2}$ 1.517 (1.501), $C^{*}O$ 1.221 (1.216), $C^{*}H$ 1.112 (1.114), $C^{*}C^{*}O$ 125.0 (123.9), $C^{*}C^{*}H$	
		114.0 (117.5)	уу
(CH3).CO	C_{2y}	CC 1.527 (1.507), CO 1.227 (1.222), CCC 117.2 (117.2)	Z Z
	C2.	$C^{1}O(1,203)(1,191), C^{1}C^{2}(1,500)(1,475), C^{2}C^{3}(1,550)(1,575)$	aaa
	020		
CH ₂ CO	C_{2v}	$C^{+}C^{2}$ 1.319 (1.314), $C^{+}O$ 1.184 (1.161), $C^{+}H$ 1.085 (1.083), $HC^{+}H$ 116.5 (122.6)	600
CH ₂ =CH-CH=O	C_s	C'C ² 1.342 (1.345), C ² C ³ 1.488 (1.470), C ³ O 1.223 (1.219), C ³ H 1.111 (1.108), C'C ² C ³	
		124.9 (119.8), C ² C ³ O 123.8 (123.2), C ² C ³ H 115.6 (115.1)	ccc
CH ≡ C−CH=O	C_{s}	C ¹ C ² 1.197 (1.209), C ² C ³ 1.439 (1.445), C ³ O 1.222 (1.215), C ¹ H 1.052 (1.055), C ³ H 1.111	
	5	$(1.106), C^{1}C^{2}C^{3}, 178.9, (178.4), C^{2}C^{3}O, 124.1, (123.6), C^{2}C^{3}H, 114.0, (113.9)$	ddd
(CHO)., trans	Can	CO 1.220 (1.207), CC 1.529 (1.525), CH 1.108 (1.116), OCC 122.0 (121.2), HCC 116.0	
(0110)2, thats	c_{2n}		1
		(•
0.	C	CO ¹ 1 227 (1 202) CO ² 1 254 (1 242) O ² U 0 040 (0 072) CU 1 105 (1 007) O ¹ CO ² 120 (
n0	~s	(124) CO201116 2 (166 2) UCO 127 (1243), U II (1242), UI (1203), UI (1203)	
`O <u>⁺</u> H		(124.9), CO-H 116.3 (106.3), HCO- 126.7 (124.1)	eee
	С-	CC 1.522 (1.520), CO ¹ 1.231 (1.214), CO ² 1.359 (1.364), O ² H 0.949 (0.97), CCO ¹ 126 8	
H,C-C	<u> </u>	(126.6) (120.2) (121.6) (121.6) (121.6) (120.6) $(120$	666
<u>О²</u> Н		(120.0), CCO 114.5 (110.0), CO H 115.6 (107.0)	JJJ
0,			
	C_{r}	$O^{1}C^{2}$ 1.224 (1.200), $C^{2}O^{3}$ 1.356 (1.334), $O^{3}C^{4}$ 1.404 (1.437), $O^{1}C^{2}O^{3}$ 122.2 (125.9),	
n	-3	$C^{2}O^{3}C^{4}$ 1257 (1148)	σσσ
O^3 CH_3			555
NO	C	NN 1 127 (1 126) NO 1 181 (1 186)	f
N ₂ O	Cv	NN 1.127 (1.120), NO 1.161 (1.160)	j la la la
11 ₂ U ₄	D_{2h}	NIV 1.032 (1.750), NO 1.167 (1.160), ONO 126.6 (135.7)	11111
_O=−H	C_s	NO ¹ 1.166 (1.163), NO ² 1.312 (1.433), O ² H 0.958 (0.954), O ¹ NO ² 113.3 (110.7), NO ² H	
O ⁱ ─N	-	110.0 (102.1)	iii
CI	~		
Q	C_s	NO ¹ 1.202 (1.199), NO ² 1.211 (1.211), NO ³ 1.340 (1.406), O ³ H 0.962 (0.964), O ¹ NO ²	
2 N 03	-	115.1 (113.9), O ² NO ³ 118.4 (115.9), NO ³ H 114.1 (102.2)	jjj
∩∕```H			-
H, D			
	C_1	CN 1.408 (1.376), CO 1.225 (1.193), CH ³ 1.108 (1.102), NH ¹ 1.001 (1.014), NH ² 1.000	
	-	(1.002), H ¹ NCO 17.0 (7 ± 5), H ² NCH ³ -28.1 (-12 ± 5)	kkk
н н,			
H,N-NO,	С.	NN 1.407 (1.427), NO 1.209 (1.206), NH 1.018 (1.005), ONO 124.2 (130.1), HNN 112.2	
- •	3	(115.2), N-NH, 129.9 (128.2)	111

^aBond length $A^{i}B^{j}$ (in Å), bond angle $A^{i}B^{j}C^{k}$ (in deg), and dihedral angle $A^{i}B^{j}C^{k}D^{l}$ (in deg) of A-B with respect to C-D measured counter-

clockwise along B-C, and angle $A^i - B^j C^k D^l$ (in deg) of A-B with the plane BCD. The superscripts *i*, *j*, *k*, *l* number the atoms in the molecule according to IUPAC rules; they are left out when the atoms can be specified unambiguously without them. ^bG. Herzberg, "Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules", 2nd ed, Van Nostrand, New York, N.Y., 1950. ^cG. Herzberg, "Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules", Van Nostrand, New York, N.Y., 1966. ^d D. R. Lide, Jr., J. Chem. Phys., 33, 1514 (1960). ^e D. R. Lide, Jr., and D. Christensen, ibid., 35, 1374 (1961). ^fC. C. Costain, ibid., 29, 864 (1958). 8 A. G. Maki and R. A. Toth, J. Mol. Spectrosc., 17, 136 (1965). ^hR. A. Bonham and L. S. Bartell, J. Am. Chem. Soc., 81, 3491 (1959), ¹D. R. Lide, Jr., J. Chem. Phys., 33, 1519 (1960), ^JA. Almenningen, I. M. Anfinsen, and A. Haaland, Acta Chem. Scand., 24, 43 (1970). ^kL. R. H. Scharpen and V. W. Laurie, J. Chem. Phys., 39, 1732 (1963). ¹K. Kuchitsu, T. Fukuyama, and Y. Morino, J. Mol. Struct., 1, 463 (1968). # T. Fukuyama, K. Kuchitsu, and Y. Morino, Bull. Chem. Soc. Jpn., 42, 379 (1969). "J. H. Callomon and B. P. Stoicheff, Can. J. Phys., 35, 373 (1957). OA. Almenningen, O. Bastiansen, and M. Traetteberg, Acta Chem. Scand., 15, 1557 (1961). P. B. Beagley, D. P. Brown, and J. J. Monaghan, J. Mol. Struct., 4, 233 (1969). 9O. Bastiansen, F. N. Fritsch, and K. H. Medberg, Acta Crystallogr., 17, 538 (1964). rW. M. Stigliani, V. W. Laurie, and J. C. Li, J. Chem. Phys., 62, 1890 (1975). S. Meiboom and L. C. Snyder, J. Chem. Phys., 52, 3857 (1970). [†]B. Bak, J. J. Led, L. Nygaard, J. Rastrup-Andersen, and S. O. Soerensen, J. Mol. Struct., 3, 369 (1969). ^uW. J. Adams, H. J. Geise, and L. S. Bartell, J. Am. Chem. Soc., 92, 5013 (1970). "These are average values". WL. H. Scharpen and V. W. Laurie, J. Chem. Phys., 43, 2765 (1965). * P. A. Baron, R. D. Brown, F. R. Burden, P. J. Domaille, and J. E. Kent, J. Mol. Spectrosc., 43, 401 (1972). 9 O. Bastiansen, L. Fernholt, H. M. Seip, H. Kambara, and K. Kuchitsu, J. Mol. Struct., 18, 163 (1973). ZJ. F. Chiang and S. H. Bauer, J. Am. Chem. Soc., 91, 1898 (1969). aa K. W. Cox, M. D. Harmony, G. Nelson, and K. B. Wiberg, J. Chem. Phys., 50, 1976 (1969); 53, 858 (1970). bb G. Dallinga, R. K. van der Draai, and L. H. Toneman, Recl. Trav. Chim. Pays-Bas, 87, 897 (1968). ^{cc} R. D. Suenram and M. D. Harmony, J. Chem. Phys., 56, 3837 (1972). ^{dd} J. F. Chiang, M. T. Kratus, A. L. Andreassen, and S. H. Bauer, J. Chem. Soc., Faraday Trans. 2, 68, 1274 (1972). ee A. Yokozeki and K. Kuchitsu, Bull. Chem. Soc. Jpn., 44, 2356 (1971). If D. W. J. Cruickshanck and R. A. Sparks, Proc. R. Soc. London, Ser. A, 258, 270 (1960). 88 D. R. Lide, Jr., J. Chem. Phys., 27, 343 (1957). hh J. E. Wollrab and V. W. Laurie, ibid., 48, 5058 (1968). ii J. E. Wollrab and V. W. Laurie, ibid., 51, 1580 (1969). ii L. Nygaard, J. T. Nielsen, J. Kirchheimer, G. Maltesen, J. Rastrup-Andersen, and G. O. Sorensen, J. Mol. Struct., 3, 491 (1969). kk G. O. Sorensen, L. Mahler, and N. Rastrup-Andersen, ibid., 20, 119 (1974). "D. G. Lister, J. K. Tyler, J. H. Hog, and N. W. Larsen, J. Mol. Struct., 23, 253 (1974). mmC. C. Costain and B. P. Stoicheff, J. Chem. Phys., 30, 777 (1959). nn Y. Morino, T. Tijima, and Y. Murata, Bull. Chem. Soc. Jpn., 33, 46 (1960). O'T. Kasuya, Sci. Pap. Inst. Phys. Chem. Res. (Jpn.), 56, 1 (1962). PP C. H. Chang, R. F. Porter, and S. H. Bauer, J. Am. Chem. Soc., 92, 5313 (1970). 99 D. W. W. Anderson, D. W. H. Rankin, and A. Robertson, J. Mol. Struct., 14, 385 (1972). ** R. L. Redington, W. B. Olson, and P. C. Cross, J. Chem. Phys., 36, 1311 (1962). ** W. C. Oelfke and W. Gordy, ibid., 51, 5336 (1969). #R. M. Lees and J. G. Baker, ibid., 48, 5299 (1968). #U. Blukis, P. H. Kasai, and R. J. Myers, ibid., 38, 2753 (1963). "T. E. Turner and J. A. Howe, ibid., 24, 924 (1956). "WB. Bak, D. Christensen, W. B. Dixon, L. Hansen-Nygaard, J. Rastrup-Andersen, and M. Schottlander, J. Mol. Spectrosc., 9, 124 (1962). xx K. Takagi and T. Oka, J. Phys. Soc. Jpn., 18, Hygard, J. YR, W. Kilb, C. C. Lin, and E. B. Wilson, Jr., J. Chem. Phys., 26, 1695 (1957).²² R. Nelson and L. Pierce, J. Mol. Spectrosc., 18, 344 (1965). ^{aaa} J. M. Pochan, J. E. Baldwin, and W. H. Flygare, J. Am. Chem. Soc., 91, 1896 (1969). ^{bbb} A. P. Cox, L. F. Thomas, and J. Sheridan, Spectrochim. Acta, 15, 542 (1959). ^{ccc} E. A. Cherniak and C. C. Costain, J. Chem. Phys., 45, 104 (1966). ^{ddd} C. C. Costain and J. R. Morton, *ibid.*, 31, 389 (1959). ^{eee} G. H. Kwei and R. F. Curl, Jr., *ibid.*, 32, 1592 (1960). ^{ff}J. L. Derissen, J. Mol. Struct., 7, 67 (1971). ⁸*g*8 R. F. Curl, Jr., J. Chem. Phys., 30, 1529 (1959). ^{hhh}D. W. Smith and K. Hedberg, J. Chem. Phys., 25, 1282 (1956). ⁱⁱⁱ D. J. Finnigan,
 A. P. Cox, A. H. Brittain, and J. G. Smith, J. Chem. Soc., Faraday Trans. 2, 68, 548 (1972). ⁱⁱⁱ A. P. Cox and J. M. Riveros, J. Chem. Phys., 42, 3106 (1965). ^{kkk}C. C. Costain and J. M. Dowling, J. Chem. Phys., 32, 158 (1960). ^{lil} J. K. Tyler, J. Mol. Spectrosc., 11, 39 (1963).

The relative energies of pairs of isomers are generally well reproduced by MNDO; see Table III. The only serious discrepancy occurs in the comparison *n*-pentane/neopentane, where MNDO predicts the latter to be much less stable. This of course is due to the tendency of MNDO to give heats of formation for crowded molecules that are too positive. The error here is, however, less than it was in MINDO/3 $(\Delta H_{isom}(calcd), 24.5 \text{ kcal/mol}).$

Rotational barriers (see Table IV) are predicted only moderately well by MNDO. As in MINDO/3, the calculated barrier for ethane is about one-third of the experimental value. For hydrazine and hydrogen peroxide, MNDO fails to reproduce the trans barriers, although the difference in energy between the trans and cis conformations is quite well reproduced. In the case of hydrogen peroxide, it is not surprising that no trans barrier is predicted since the inclusion of polarization functions in the basis set is found essential to obtain a barrier.⁴ For hydrazine, the MNDO torsional potential shows a shoulder at 90° but no local minimum; we have to conclude that the tendency of the lone pairs to be orthogonal to each other (which is responsible for the skew structure of hydrazine⁵) is underestimated in MNDO.

Table V lists MNDO heats of formation for neutral radicals, calculated by the half-electron approximation,^{6,7} while Table VI gives MNDO heats of formation for some closed shell cations. The mean absolute errors for radicals (8.7 kcal/mol) and for cations (7.2 kcal/mol) are slightly higher than for neutral molecules (6.3 kcal/mol) but of the same order of magnitude. The radicals systematically tend to be predicted somewhat too stable, whereas there is no such trend for the cations.

(III) Molecular Geometries

Table VII compares MNDO and MINDO/3 results for bond lengths and bond angles. Table VIII shows the optimized MNDO structures for 80 molecules, along with the experimental data. Full structures are given for small molecules, but as a rule only the molecular skeletons are given for larger ones. When comparing calculated and observed values for geometrical variables, it should be remembered that the experimental r_s values from microwave spectroscopy and r_g values from electron diffraction differ somewhat from the equilibrium r_e values. Discrepancies of less than 0.01 Å in bond lengths and 1° in angles are therefore not too meaningful.

The mean absolute error in bond lengths (see Table VII) is reduced from 0.022 Å in MINDO/3 to 0.014 Å in MNDO. Major improvements are found for CH, NH, NN, N-C, and O-C bonds, whereas MINDO/3 is superior for OO bond lengths, for which the MNDO values are much too small. This failure of MNDO is related to the use of atomic parameters.

Table IX. Mean Absolute Errors ΔIP_1 for First Ionization Potentials^{*a*}

		ΔIP, eV		
Class of compd	No.	MNDO	MINDO/3	
All compounds	51	0.48	0.71	
Hydrocarbons	22	0.41	0.31	
Nitrogen compounds (CHN)	13	0.54	1.58	
Oxygen compounds (CHO)	16	0.53	0.56	

^a Based on the results in Table X.

Table X. First Ionization Potentials IP₁

	1P, eV			-		IP, eV			
Molecule	Calcd ^a	Exptl ^b	Error	Ref	Molecule	Calcda	Exptl ^b	Error	Ref
Н,	15.74	15.98	-0.24	с	NH,	11.19	10.85	+0.34	 c
ĊĤ₄	13.87	14.0d	-0.13	С	CH,NH,	10.55	9.45	+1.10	k
C ₂ H ₆	12.70	12.1	+0.6	с	(CH,),ŇH	10.04	8.93	+1.11	k
C,H	10.18	10.51	-0.33	с	(CH ₃) ₃ N	9.59	8.54	+1.05	k
C ₂ H,	11.03	11.40	-0.37	с	DNH	10.68	9.8	+0.9	с
CH ₃ CH ₂ CH ₃	12.34	11.5	+0.8	е					
CH ₃ CH=CH,	9.97	9.88	+0.11	f	NH NH	8.57	8.21	+0.36	j
CH₃C≡CH	10.73	10.37	+0.36	С					
$CH_2 = C = CH_2$	10.02	10.07	-0.05	g	$\langle () \rangle$ N	9.69	9.67	+0.02	1
\sim	9.14	9.08	+0.06	c					
	10.00	10.17	0.17		HCN	13.42	13.60	-0.18	С
	10.00	10.17	-0.17	C	CH₃CN	12.80	12.21	+0.59	С
\succ	12.12	11.4	+0.7	е	$CH_2 = CH - CN$	10.62	10.91	-0.29	m
+	12.12	11.3^{d}	+0.8	е	CH≡C-CN	11.36	11.60	-0.24	С
~	11.40	11.00	10.4		$(CN)_2$	13.22	13.36	-0.14	С
	11.43	11.04	+0.4	С	O ₃	12.71	12.75	-0.04	n
\triangleright	9.89	9.86	+0.03	h	H ₂ O	12.19	12.62	-0.43	С
	11.81	11 0đ	+0.8	i	CH₃OH	11.41	10.96	+0.45	0
	11.01	11.04	.0.0	4	$(CH_3)_2O$	11.04	10.04	+1.00	р
	9.77	9.43	+0.34	h	$\supset \circ$	11.49	10.57	+0.92	С
\bigcirc	9.72	9.18	+0.54	h	$\sum_{i=1}^{n}$	9.14	8.88	+0.26	j
					CO	13.43	14.01	-0.58	с
	9.04	8.57	+0.47	1	CO,	12.79	13.78	-0.99	с
					CH,O	11.04	10.88	+0.16	с
$\langle () \rangle$	9.39	9.25	+0.14	С	CH ₃ CHO	10.88	10.21	+0.67	q
					(CH ₃),CO	10.75	9.72	+1.03	r
()) —сн.	9.28	8.82	+0.46	С	CH,CO	9.29	9.64	-0.35	С
					СН,=СН-СНО	10.69	10.11	+0.58	с
	8 5 7	8 15	+0.42	c	(CHO),	10.75	10.59	+0.16	С
	0.57	0.15	.0.74	C C	нсоон	11.74	11.51	+0.23	5
N ₂	14.88	15.60	-0.72	С	HCOOCH ₃	11.61	11.02	+0.59	t

^aCalculated via Koopmans' theorem. ^bVertical ionization potentials from UV-photoelectron spectroscopy. ^cD. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, "Molecular Photoelectron Spectroscopy", Wiley-Interscience, London, 1970. ^d Band center (average of Jahn-Teller peaks). ^eJ. N. Murrell and W. Schmidt, J. Chem. Soc., Faraday Trans. 2, 68, 1709 (1972). ^fA. Katrib and J. W. Rabalais, J. Phys. Chem., 77, 2358 (1973). ^gF. Brogli, J. K. Crandall, E. Heilbronner, E. Kloster-Jensen, and S. A. Sojka, J. Electron Spectrosc. Relat. Phenom. 2, 455 (1973). ^hP. Bischof and E. Heilbronner, Helv. Chim. Acta, 53, 1677 (1970). ⁱP. Bischof, E. Haselbach, and E. Heilbronner, Angew, Chem., Int. Ed. Engl., 9, 953 (1970). ^jP. J. Derrick, L. Asbrink, O. Edquist, B. O. Jonsson, and E. Lindholm, J. Mass. Spectrom. Ion Phys., 6, 161, 177, 191, 203 (1971). ^kJ. P. Maier and D. W. Turner, J. Chem. Soc., Faraday Trans. 2, 69, 521 (1973). ^lSee ref 11b. ^mR. F. Lake and H. Thompson, Proc. R. Soc. London, Ser. A, 317, 187 (1970). ⁿC. R. Brundle, Chem. Phys. Lett., 26, 25 (1974). ^oM. B. Robin and N. A. Kuebler, J. Electron Spectrosc. Relat. Phenom., 1, 13 (1972). ^pS. Cradock and R. A. Whiteford, J. Chem. Soc., Faraday Trans. 2, 69, 281 (1974). ^oC. R. Brundle, M. B. Robin, N. A. Kuebler, and D. Yee, and C. E. Brion, J. Electron Spectrosc. Relat. Phenom., 4, 77 (1974). ^rC. R. Brundle, M. B. Robin, N. A. Kuebler, and H. Basch, J. Am. Chem. Soc., 94, 1451 (1972). ^sC. R. Brundle, D. W. Turner, M. B. Robin, and N. A. Kuebler, J. 292 (1969). ^tD. A. Sweigart and D. W. Turner, J. Am. Chem. Soc., 94, 552 (1972).

When bond parameters were used in our MNDO parametrization studies,¹ the OO bond lengths could be reproduced without difficulty.

The mean absolute error in bond angles (see Table VII) is reduced from 5.6° in MINDO/3 to 2.8° in MNDO. HCH angles, CCC angles in acyclic compounds, angles at nitrogen, and flap angles in b² cyclic compounds are all predicted more reliably in MNDO than in MINDO/3. Bond angles at oxygen tend to be too large in MNDO and HCH angles slightly too small, although the errors are decreased compared to MINDO/3.

Ring conformations are not reproduced well by either MNDO or MINDO/3. Both methods predict cyclobutane, cyclopentane, and cyclopentene to be essentially planar. Note that ab initio calculations with minimal basis sets also underestimate the puckering in these molecules.⁸ Cyclohexane and cyclohexene are predicted to be nonplanar, but the optimized structures are somewhat too flat. MNDO gives stronger puckering than MINDO/3.

Structures of trivalent nitrogen compounds are usually reproduced better by MNDO than by MINDO/3. Dimethylamine, trimethylamine, aniline, cyanamide, and nitramide are pyramidal in MNDO, mostly with structures close to experiment, whereas they are planar, or almost planar, in MINDO/3.

(IV) Ionization Potentials

Calculated and observed ionization potentials are compared in Tables IX-XI. The calculated values are negative orbital energies, i.e., we assume the validity of Koopmans' theorem⁹ which neglects the electronic reorganization and the change in correlation energy upon ionization. Apart from a few exceptions, the errors introduced by this approximation (Koopmans' defect¹⁰) are usually less than 1 eV.

The mean absolute error for the first ionization potential (see Table IX) is reduced from 0.71 eV in MINDO/3 to 0.48 eV in MNDO. The main improvement is for nitrogen-containing compounds. The first ionization potentials in MNDO tend to be slightly larger than the experimental values (see Table X).

For higher ionization potentials (see Table XI), MNDO is clearly superior to MINDO/3. The ordering of the MNDO levels and their splittings agree very satisfactorily with experimental data. The results for N_2 are particularly satisfying because the Hartree-Fock method fails to predict the ionizations even in the right order.¹² The results for unsaturated -- --

	IP,	ev					
Molecule	Calcd ^a	Exptl ^b	Assignment ^c	Ref			
CH₄	13.87	14.0^{d}	1t ₂	е			
	30.61	22.91	1a,				
C,H,	12.70		1e _g	f			
1 0		12.1	8				
	13.33		$2a_{1\sigma}$				
	15.09	15.0	1e _u				
	24.81	20.41	122				
C.H.	10.18	10.51	1b	q			
C2114	12.64	12.85	1010	8			
	14 61	14 66	2a.				
	15.83	15.87	1 bou				
СН	11.03	11 40	1020 1π	f			
C 2112	15.87	16 36	2 0	J			
	21.01	18.69	1 a				
	0.39	9.24	10 U 1e.	h			
\bigcirc	12.48	11 49		<i>' i</i>			
\subseteq	12.40	123	202g				
	14.45	13.8	$\frac{1420}{26}$				
	15 21	14 7	2010 1ba				
	16 79	15.4	10-2u 1b				
	17.53	16.85	101u 2a.				
NH	11 19	10.85	$\frac{2a_{1g}}{2a}$	p			
14113	16 73	16.00	2a1 1e	Ľ			
	32.08	27.0	10				
HCN	13 42	13.60	$1a_1$ 1π	f			
nen	14.26	14.0	3 0	J			
	21.63	10.05	30 2 a				
NT	14.99	15.55	20	f			
IN ₂	14.00	16.00	20g	J			
	21.06	10.50	1 <i>"</i> U 1 <i>a</i>				
чо	12.10	10.70	10 1b	0			
H ₂ O	12.19	12.02	10,	e			
	14.47	14./4	2a ₁ 1b				
	19.11	10.51	102				
<u> </u>	40.04	52.2	12	£			
02	12.79	13.78	$1\pi_{g}$	J			
	17.09	17.59	$\frac{1}{2}\pi_{u}$				
	1/.81	18.08	$2\sigma_{u}$				
<u> </u>	21.25	19.40	$\frac{2\sigma_g}{2h^g}$				
$CH_2 = 0$	11.04	10.88	20 ₂	1			
	14.19	14.38	16,				
	16.30	16.00	2a,				
	16.96	16.78	1b ₂				

^aCalculated via Koopmans' theorem. ^b Vertical ionization potentials from UV-photoelectron spectroscopy. ^c The numbering of the MO's refers to a valence basis set. The assignments are taken from the references; MNDO gives identical assignments, in all cases. ^d Band center (average of Jahn-Teller peaks). ^e A. W. Potts and W. C. Price, Proc. R. Soc. London, Ser. A, 326, 165, 181 (1972). ^f See footnote c of Table X. ^g See footnote r of Table X. ^h See ref 11b. ⁱ A. D. Baker, C. Baker, C. R. Brundle, and D. W. Turner, J. Mass Spectrom. Ion Phys., 1, 285 (1968). New experimental results show that the original assignment (1b₂, 2a₁) of the last two bands has to be reversed, see: S. T. Hood, A. Hamnett, and C. E. Brion, Chem. Phys. Lett., 41, 428 (1976).

systems are also very satisfactory, all the ionizations being predicted in the order observed. Previous semiempirical treatments, including MINDO/3, had given spurious highlying σ levels. Thus MNDO predicts the four highest levels of naphthalene to be of π type, in agreement with ab initio calculations^{11a} and experiment,^{11b} whereas MINDO/3 inserted several σ levels between the four highest π MO's. The only shortcoming of MNDO is an overestimation of the ionization energies corresponding to MO's with high 2s coefficients, e.g., 1a₁ in methane, ammonia, or water. This is undoubtedly due to the neglect of 1s-2s interactions, arising from the use of the core approximation in MNDO. Such interactions will of course have little effect on the total energies of molecules but will affect the orbital energies of MO's derived largely from 2s AO's.

Table XII. Mean Absolute Errors $\Delta \mu$ for Dipole Moments^{*a*}

		Δμ, D		
Class of compd	No.	MNDO	MINDO/3	
All compounds	57	0.30	0.49	
Hydrocarbons	11	0.25	0.26	
Nitrogen compounds (CHN)	18	0.41	0.77	
Oxygen compounds (CHO)	22	0.19	0.37	
Nitrogen-oxygen compounds	6	0.50	0.49	

^a Based on the results in Table XIII.

(V) Dipole Moments and Charge Distributions

Calculated and observed dipole moments are compared in Tables XII and XIII. The mean absolute error for the dipole moments (Table XII) is reduced from 0.49 D in MINDO/3 to 0.30 D in MNDO. The greatest improvements are for systems containing heteroatoms. Dipole moments for unsaturated hydrocarbons are usually predicted too low in MNDO (Table XIII).

Net atomic charges for some simple molecules are listed in Table XIV. The MNDO values are usually similar to the corresponding STO-3G ones,¹³ which were calculated using orbital exponents optimized for each molecule. In heterosystems particularly, the charge separation between the carbon and hetero atoms is comparable for MNDO and STO-3G but much larger for MINDO/3. There are, however, a few significant differences.

In saturated hydrocarbons, MNDO yields the polarity C^+-H^- for the C-H bond¹⁴ and STO-3G C^--H^+ , but the net charges are in both cases small. Substitution of a methyl group for a hydrogen atom at a center X makes the net atomic charge of X slightly more negative in MNDO but more positive in STO-3G (cf. the series H₂O, CH₃OH, (CH₃)₂O). Again, the effects are small, but of opposite sign. Finally, MNDO seems to underestimate the polarization of π electrons by alkyl substituents, judging by the low values of the dipole moments calculated for unsaturated hydrocarbons.

(VI) Computational Aspects

Table XV lists the computation times required for one SCF calculation using various SCF methods. That for a MNDO calculation is only about 20% greater than for a MINDO/3 one. The rate-determining step in both cases is matrix diagonalization, not integral evaluation as in ab initio methods. Derivatives of the energy can therefore be calculated very rapidly in MNDO by finite difference, allowing the use of rapid and efficient procedures for locating minima and transition states on the potential surface for a reaction. The time required for such calculations is also only a little greater than it is for M1NDO/3.¹⁵

Compared with STO-3G, a single SCF calculation with MNDO is faster "only" by a factor of about 20 (see Table XV). Since, however, the calculation of gradients in ab initio procedures is much more time consuming, geometry optimizations will be much faster in MNDO than in STO-3G (estimated factor, 100:1). The computational advantages of MNDO would of course be still more conspicuous in comparisons with more sophisticated ab initio methods.

(VII) Conclusions

The data and statistics provided in the previous chapters show that the MNDO values for heats of formation, molecular geometries, ionization potentials, and dipole moments are quite close to the experimental values. The MNDO results are superior to the MINDO/3 ones in most respects, particularly for nitrogen-containing compounds. Qualitative improvements

		μ, D				μ, D			
Molecule	Calcd.	Exptl	Error	Ref	Molecule	Calcd.	Exptl	Error	Ref
CH ₃ CH ₂ CH ₃	0.00	0.08	-0.08	а	CH ₃ NH-NH ₃	1.538	1.66g	-0.13	h
CH ₃ CH=CH ₂	0.04	0.37	-0.33	а	CH,N,	1.25	1.50	-0.25	а
CH₃C≡CH	0.12	0.78	-0.66	а	N				
\triangleright	0.48	0.45	+0.03	а	į>	1.55	1.59	-0.04	а
	0.08	0.13	-0.05	а	CH ₃ N ₃	1.63	2.17	-0.54	a
\sim	0.05	0.00	0.15		0,	1.18	0.53	+0.65	а
∇	0.05	0.20	-0.15	а	H ₂ O	1.78	1.85	-0.07	а
					CH₃OH	1.48	1.70	-0.22	а
	0.18	0.42	-0.24	а	C ₂ H ₅ OH	1.40	1.69	-0.29	а
					$(CH_3)_2O$	1.26	1.30	-0.04	а
	0.22	0.62	-0.40	b	(C,H,),O	1.09	1.15	-0.06	а
					$\sum_{i=1}^{n}$	1.92	1.89	+0.03	а
\searrow	0.69	0.42	+0.27	С	Он-он	1.67	1.45	+0.22	а
СН.	0.06	0.36	-0.30	а	\square	0.42	0.66	-0.24	а
\wedge	0.41	0.68	-0.27	d	OCH.	1.44	1.38	+0.06	а
NH,	1.76	1.47	+0.29	а	co	0.19	0.11	+0.08	а
CH NH,	1.48	1.31	+0.17	a	CH_O	2.16	2.33	-0.17	а
(CH ₃),NH	1.17	1.03	+0.14	a	CH CHO	2.38	2.69	-0.31	а
$(CH_3)_3N$	0.75	0.61	+0.14	a	(CH ₄),CO	2.51	2.88	-0.37	а
C,H,NH,	1.52	1.22	+0.30	a	CH.CO	1.04	1.42	-0.38	а
CNH .	1.75	1.90	-0.15	а	CH,=CH-CHO	2.93	3.12	-0.19	а
					сн≕с-сно	2.86	2.47	+0.39	а
NH	1.81	1.74	+0.07	е	НСООН	1.49	1.41	+0.08	а
					CH3COOH	1.68	1.74	-0.06	а
$\overline{\bigcirc}_{N}$	1 97	2.22	-0.25	f	C,H,COOH	1.64	1.75	-0.11	а
	1.57	2.22	0.25	J	HCOOCH3	1.63	· 1.77	-0.14	а
NH ₂	1.48	1.53	-0.05	а	CH ₃ COOCH ₃	1.74	1.72	+0.02	а
					HCONH ₂	3.09	3.73	-0.64	а
HCN	2.51	2.98	-0.47	а	$HCON(CH_3)_2$	3.19	3.82	-0.63	а
CH₃CN	2.63	3.92	-1.29	а	N ₂ O	0.76	0.17	+0.59	а
CH ₂ =CH-CN	2.97	3.87	-0.90	а	HONO trans	2.27	1.86	+0.41	i
CH≡C-CN	3.21	3.72	-0.51	а	HONO cis	1.56	1.42	+0.14	i
CH₃NC	2.17	3.85	-1.68	а	HONO ₂	2.78	2.17	+0.61	а

^aR. D. Nelson, Jr., D. R. Lide, Jr., and A. A. Maryott, *Natl. Stand. Ref. Data Ser., Natl. Bur. Stand.*, No. 10 (1967) ^bR. D. Brown, F. R. Burden, A. J. Jones, and J. E. Kent, *Chem. Commun.*, 808 (1967). ^c See footnote x of Table VIII. ^dM. D. Harmony and K. W. Cox, *J. Ann. Chem. Soc.*, 88, 5049 (1966). ^e See footnote *jj* of Table VIII. ^fSee footnote *kk* of Table VIII. ^gInner rotamer. ^hR. P. Lattimer and M. D. Harmony, *J. Chem. Phys.*, 53, 4575 (1970). ⁱA. P. Cox, A. H. Brittain, and D. J. Finnigan, *Trans. Fanaday Soc.*, 67, 2179 (1971).

Table XIV. Net Atomic Charges q_X^a

Molecule	Atom X	$q_{\mathbf{X}}, le$	Molecule	Atom X	q _X , ⊫el
CH.	С	+0.072	(CH ₃) ₂ O	С	+0.196
C ₄ H ₂	С	+0.018		0	-0.335
C.H.	С	-0.084	СО	С	+0.184
C ₁ H ₂	С	-0.157	CO,	С	+0.446
$\sum_{i=1}^{n-2}$	С	-0.077	CHJO	С	+0.289
Π	С	-0.035	-	0	-0.291
\bigcirc	C	-0.059	H st C	C O'	+0.349 -0.355
NH,	N	-0.246	∕O ≓ −H4	U ⁻	+0.0210
HCN	Н	+0.191		н Н4	+0.081 +0.202
	С	-0.090	$N^1 = N^2 = 0$	N'	-0.062
	N	-0.101	It It O	N^2	+0.335
H ₂ O CH OH	0	-0.318		õ	-0.273
0113011	0	-0.327			

^a The net atomic charge q_X , in units of the elementary charge |e|, is defined as $q_X = Z_X - \Sigma_{\mu} X P_{\mu\mu}$, where Z_X is the core charge of atom X, $P_{\mu\mu}$ is a diagonal element of the bond order matrix, and the summation extends over all basis orbitals of atom X.

of MNDO over MINDO/3 are found in cases where directional effects play an important role. These improvements are especially pleasing in view of the facts that MNDO uses considerably fewer adjustable parameters than MINDO/3 and that the computational effort for MNDO is only slightly higher than for MINDO/3.

MNDO therefore seems to represent a significant advance over MINDO/3, especially for compounds containing heteroatoms. Since MINDO/3 has already proved useful in a number of chemical connections,¹⁶ it seems likely that MNDO

Table XV. Computation Times T for One SCF Calculation^a

	<i>T.</i> s						
Molecule	MINDO/3	MNDO	STO-3G ^b	4-31G ^b			
CH4	0.44	0.53	4.60	22.07			
C,H	1.65	1.98	26.09	155.91			
$C_{3}H_{8}$	3.11	4.21	93.79				
\bigcirc	6.59	7.16	255.56	1759.8			
$\bigcirc \bigcirc$	39.14	48.97	1279.0				

^aCentral processor time on a CDC 6600. The STO-3G and 4-31G programs were provided by Dr. A. Komornicki. ^bOn the CDC system, the user is additionally charged for the disk storage of integrals which amounts to about 40% of the total TM charges.

will find numerous applications in the study of reaction mechanisms and other chemical behavior.

Acknowledgment. This work was supported by the Air Force Office of Scientific Research (Grant AFOSR 75-2749) and the Robert A. Welch Foundation (Grant F-126). The calculations were carried out using the CDC 6400/6600 computer at the University of Texas Computation Center. One of us (W.T.) thanks the Studienstiftung des deutschen Volkes for a postdoctoral fellowship.

References and Notes

- (1) M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., preceding paper in this issue
- (2) R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1294, 1298 (1975).
- (3) R. Fletcher and M. J. D. Powell, Comput. J., 6, 163 (1963); W. C. Davidon, (i) *i*, 10, 406 (1968).
 (4) T. H. Dunning and N. W. Winter, *J. Chem. Phys.*, 63, 1847 (1975).
 (5) L. Radom, W. J. Hehre, and J. A. Pople, *J. Am. Chem. Soc.*, 94, 2371
- (1972). (6) M. J. S. Dewar, J. A. Hashmall, and C. G. Venier, J. Am. Chem. Soc., 90, 1953 (1968).
- (7) M. J. S. Dewar and N. Trinajstić, J. Chem. Soc. A, 1220 (1971).
- (8) D. Cremer and J. A. Pople, J. Am. Chem. Soc., 97, 1358 (1975).
- (9) T. Koopmans, Physica (Utrecht), 1, 104 (1934).
- (10) B. Kellerer, S. Cederbaum, and G. Hohlneicher, J. Electron Spectrosc. Relat. Phenom., 3, 107 (1974). (11) (a) R. J. Buenker and S. D. Peyerimhoff, Chem. Phys. Lett., 3, 37 (1969);
- (b) C. R. Brundle, M. B. Robin, and N. A. Kuebler, J. Am. Chem. Soc., 94, 1466 (1972).
- See L. S. Cedarbaum, *Chem. Phys. Lett.*, **25**, 562 (1974); P. E. Cade, K. D. Sales, and A. C. Wehl, *J. Chem. Phys.*, **44**, 1973 (1966).
 W. J. Hehre and J. A. Pople, *J. Am. Chem. Soc.*, **92**, 2191 (1970).
- (14) The polarity C⁺-H⁻ is definitely preferred for saturated hydrocarbons when using the Dewar-Sabelli-Klopman approximation for the repulsion integrals in MNDO. In three separate optimizations, we deliberately chose the initial parameter to start with the opposite polarity C^--H^+ , but at the end of the optimization, the final parameters yielded C^+-H^- each time.
- (15) The storage of the two-center MNDO repulsion integrals presents no special problems. For molecules up to the size of benzene (1875 integrals), they are easily kept in the core, and for larger molecules, they can be stored on disk
- (16) M. J. S. Dewar, Chem. Br., 11, 97 (1975).

Effect of Electronic State of Carbon Atoms on Their Reactions with Cyclopentadiene in Inert Gas Moderated Systems

Timothy L. Rose*1a and Colin F. MacKay1b

Contribution from the Departments of Chemistry, Texas A&M University, College Station, Texas 77843, and Haverford College, Haverford, Pennsylvania 19041. Received July 6, 1976

Abstract: Products of the reactions of hot and moderated free carbon atoms with cyclopentadiene have been studied in pure and oxygen scavenged systems. Experiments with different rare gas moderators have provided evidence that both triplet and singlet carbon atoms react with cyclopentadiene and oxygen with comparable efficiencies and many similar products result. In distinction from previous work on oxygen scavenged alkane systems, acetylene is thought to be formed to some extent by thermal or near thermal $C(^{3}P)$ atoms. The formation of the ring expansion product, benzene, also appears to result in part from $C(^{3}P)$ reactions. On the other hand, the straight chain C_6H_6 isomers are attributed almost exclusively to singlet atoms.

In the past decade as the result of the application of a variety of techniques,² the broad outlines of the chemistry of the free carbon atom have been traced. Insertion into the C-H bond, addition to the π bond, and abstraction of oxygen and halogen atoms have all been identified.¹³ While some progress has been made in understanding the effects of excess kinetic energy on carbon atom reactivity, the problem is complex because of the need to sort out the effects of electronic excitation from those due to translational energy. This in turn is complicated by the fact that our knowledge of the differences in the chemistry of the ground $C(^{3}P)$ and low-lying $C(^{1}D)$ and $C(^{1}S)$ states is rudimentary. Some progress in unraveling these problems have been made recently as the result of a series of experiments involving production of C atoms by flash photolysis of C_3O_2 in the presence of simple substrates.³ The decay of these atoms was followed spectroscopically and rate constants were deduced. This work has shown that the $C(^{1}D)$ atom reacts efficiently with both methane and ethylene. Acetylene is a major product of the methane reaction in agreement with earlier results of experiments with nucleogenic carbon atoms.13 The $C(^{3}P)$ atom appears to react slowly with methane, and there is evidence from microwave discharge experiments with C_3O_2 that its reaction with ethylene is also slow.⁶ Such information is of considerable value in the interpretation of more complex systems.

Also of significance is the finding of Peterson¹⁴ that the choice of rare gas used as moderator in the nucleogenic experiments has a marked effect on triplet/singlet atom ratio, which varies from about 0.45 with neon to 2.3 or more with krypton and xenon. Taylor, Ache, and Wolf¹⁵ have also carried out moderation experiments in oxygen scavenged alkane systems. Their results have lead to the proposals that hot $C(^{1}D)$ forms methyne, hot $C(^{3}P)$ and thermal $C(^{1}D)$ lead to acetylene, and thermal C(³P) reacts 10⁴ to 10⁶ times faster with

Rose, MacKay / Reactions of Carbon Atoms with Cyclopentadiene